Problem 2

Derive the formula (1.4) for the sum S_{n} of the geometric progression
$S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}$. Hint: Multiply S_{n} by r and subtract the result from S_{n}; then solve for S_{n}. Show that the geometric series (1.6) converges if and only if $|r|<1$; also show that if $|r|<1$, the sum is given by equation (1.8).

Solution

The aim here is to derive the finite summation formula (1.4),

$$
\begin{equation*}
S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}=\sum_{i=0}^{n-1} a r^{i}=\frac{a\left(1-r^{n}\right)}{1-r} . \tag{1.4}
\end{equation*}
$$

Multiply both sides by r.

$$
\begin{equation*}
r S_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n} \tag{1}
\end{equation*}
$$

Subtract the respective sides of equation (1.4) from those of equation (1).

$$
\begin{aligned}
r S_{n}-S_{n} & =\left(a r+a r^{2}+a r^{3}+\cdots+a r^{n}\right)-\left(a+a r+a r^{2}+\cdots+a r^{n-1}\right) \\
& =a r^{n}-a
\end{aligned}
$$

Factor both sides.

$$
(r-1) S_{n}=a\left(r^{n}-1\right)
$$

Multiply both sides by -1 .

$$
(1-r) S_{n}=a\left(1-r^{n}\right)
$$

Divide both sides by $1-r$.

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \quad r \neq 1
$$

